Journal homepage: http://www.ifrj.upm.edu.my

Mini Review

International FOOD <u>RESEARCH</u> Journal

Plant-derived foods containing polyphenols with endothelial protective effects

Mokhtar, S. S. and *Rasool, A. H.

Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kota Bharu, Malaysia

Article history

<u>Abstract</u>

Received: 20 November 2015 Received in revised form: 4 April 2016 Accepted: 15 April 2016

Cardiovascular disease (CVD) is the leading cause of death and disability in the world. The primary cause of CVD is development of atherosclerosis resulting from chronic inflammation and endothelial dysfunction. Indeed, endothelial dysfunction is considered to be the earliest stage in the process of atherosclerosis development. There is great interest in discovering strategies to inhibit endothelial dysfunction and atherosclerosis progression. The role of plant constituents routinely consumed have attracted much attention as preventive health approaches due to their availability and perceived safety. Accumulating studies suggest that constituents present in tea, grape, cocoa, soy and pomegranate are associated with reduced risks of CVD. In this review, we discuss the potential of the above mentioned dietary ingredients to improve endothelial function *in vivo* and *in vitro*.

© All Rights Reserved

<u>Keywords</u>

Tea Cocoa Polyphenols Endothelial function Cardiovascular diseases

Introduction

Endothelium, the inner monolayer of the blood vessel, regulates vascular tone and permeability, the balance between coagulation and fibrinolysis, inflammatory activity as well as cell proliferation. Alterations to these functions lead to endothelial dysfunction (Vanhoutte et al., 2009). Endothelial dysfunction has been considered to be an early event of pathophysiologic importance in the atherosclerotic process. Endothelial dysfunction is associated with most forms of cardiovascular diseases (CVD) such as hypertension, coronary artery disease (CAD), chronic heart failure and peripheral artery disease. The hallmark of endothelial dysfunction is reduced endothelial nitric oxide synthase (eNOS) expression and/or impaired nitric oxide (NO) availability (Felaco et al., 2001; Mokhtar et al., 2013). In blood vessels, NO is synthesized by the eNOS enzyme in endothelial cells and diffuses into vascular smooth muscle cells, leading to vasodilatation. NO is a major anti-atherogenic factor due to a number of vasoprotective effects; thus decreased NO availability in the vasculature is likely to promote the progression of vascular diseases. Thus improved NO bioavailability would be a promising step in the therapy and prevention of cardiovascular disorders.

Polyphenols are naturally occurring compounds found largely in fruits, vegetables, cereals and

beverages. Polyphenols is the subject of increasing scientific interest because of their possible beneficial effects on human health (Pandey and Rizvi, 2009). Polyphenol molecules and components typically carry several hydroxyl groups; and more than 4000 to 7000 varieties are present in plants. Polyphenols can be categorized into flavonoids and non-flavonoids. The flavonoid group has a phenyl chroman frame (C6-C3-C6) and based on differences in side-chain structures can be classified into 6 subclasses: flavones, isoflavones, flavanones, flavonoids include phenolic acids, tannins, curcumins and resveratrol (Table 1) (Habauzit and Morand, 2012; Del Rio *et al.*, 2013; Yamagata *et al.*, 2015).

This paper aimed to review available evidence on use of polyphenol-containing foods (tea, grapes, cocoa, soy and pomegranate) on endothelial function in humans. Possible mechanistic principles involving the effects of these dietary ingredients on endothelial function are also discussed using experimental and in vitro studies. A table summarising the effects of these natural products on endothelial function are given as Table 2.

Black and green tea

Intervention study

Tea, a product made up from the leaf and bud of the plant Camellia sinensis, is the second most widely

Polyphenols	Classes	Representative compounds	Food sources
Flavonoids	Flavones	Apigenin	Vegetables: Parsley, celery, sweet peppers
		Luteolin	
	Isoflavones	Genistein	Legumes: Soybeans
		Daidzein	Processes foods: miso, tofu, tempeh, soy milk
	Flavanones	Hesperetin	Fruits: citrus fruits (orange, grapefruit, lemon)
		Naringenin	Beverages: citrus juices
		Eriodictyol	
	Flavonols	Quercetin	Fruits: apples, apricots, plums, cranberries, strawberries, grapes
		Kaempferol	Vegetables: kale, onions, broccoli, tomatoes
		Myricetin	Beverages: red wine, green tea, black tea, grape juice
	Anthocyanidins	Pelargonidin	Fruits: black grapes
		Cyanidin	Beverages: red wine, grape juice
		Delphinidin	
		Petunidin	
		Malvidin	
	Flavanols	Catechin	Cocoa-derived products
			Fruits: apples, apricots, cherries, grapes, peaches, blackberries
			Beverages: green tea, black tea, red wine, grape juice, cider
		Proanthocyanidins	Fruits: grapes, peaches, persimmons, apples, pears, berries
			Beverages: red wine, cider, tea, beer
Non-flavonoids	Phenolic acids	Hydroxybenzoic acids	Fruits: raspbernes, strawbernes, blackbernes, pomegranate,
			persimmon, walnuts, hazelnuts
		Hydroxycinnamic acids	Beverages: Coffee
	Resveratrol		Beverages: red wine
			Fruits: nuts
			t tena, treta
	Lignans		Fruits: flaxseeds
	Curcumins		Food: spices
	Curcumins		Food: spices

consumed drink in the world after water. Tea is a rich source of polyphenolic compounds, particularly flavonoids. The major flavonoids present in green tea are catechin (under the subclass of flavanols) such as epicatechin (EC), epicatechin-3-gallate (ECG), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG). In black tea, the major flavonoids present are polymerized catechins such as theflavins and thearubigens (McKay and Blumberg, 2002; Cabrera *et al.*, 2006; Chacko *et al.*, 2010; Khan and Mukhtar, 2013; Fuchs *et al.*, 2014).

A number of studies have investigated the effects of black and green tea, or tea flavonoids on flowmediated dilatation (FMD) of the human brachial arteries. FMD represents endothelium-dependent relaxation of the brachial artery, mediated via release of NO. Improvement in FMD has been observed in human trials with the consumption of green or black teas (Duffy *et al.*, 2001; Nagaya *et al.*, 2004; Hodgson 2006; Kim *et al.*, 2006; Alexopoulos *et al.*, 2008; Jochmann *et al.*, 2008; Grassi *et al.*, 2009). The effect of green tea consumption on FMD has been studied in 14 healthy individuals who took either six grams of green tea, 125 milligrams of caffeine or hot water. This study showed that FMD increased significantly with green tea consumption, but was not affected by caffeine or hot water (Alexopoulos et al., 2008). In a randomized study of 66 patients with preexisting CAD, acute (450 millilitres for two hours) and chronic consumption (900 ml/day for four weeks) of black tea resulted in significant improvements in endothelium-dependent FMD (Duffy et al., 2001). Consumption of green tea (eight g/day) for two weeks also improved FMD in young healthy smokers (Nagaya et al., 2004; Kim et al., 2006). In patients with chronic kidney disease, consumption of green tea (five g/day) for four weeks improved FMD (Park et al., 2010). In a cross-over study performed in 19 healthy men, twice daily intake of black tea (0, 100, 200, 400 and 800 mg/day) for a period of one week increased FMD and decreased peripheral arterial stiffness in a dose-dependent manner (Grassi et al., 2009). Another study in 21 healthy women showed a significant increase in FMD after two hours of

Table 2. Natural products and its effects on endothelial-dependent vasodilatation

Black and Green tea			
Intervention study			
Meta-analyses (n=9)	Tea (500 ml) compared to placebo	Increased FMD by 2.6% compared to placebo	
Healthy individuals (n=14)	Green tea (6 g), caffeine (125 mg) or hot water	Increased FMD with green tea, and not affected by caffeine or hot water intakes	Alexopoulos et al 2008
Healthy smokers (n=20)	Green tea (5g/day) for 2 weeks	Improved FMD	Nagaya et al 2004; Kim et al 2006
Patients with coronary artery disease (n=66)	Short term effect : black tea (450 ml) for 2 hours	Improved endothelial-dependent FMD	Duffy et al., 2001
	Long term effect: black tea (900 ml/day) for 2 weeks		
Patients with CAD	Green tea (5 g/day) for 4 weeks	Improved FMD	Park et al., 2010
Healthy men (n=19)	5 treatments with twice daily intakes of black tea (0, 100, 200, 400 and 800 mg) for 1 week	Tea dose-dependently increased FMD and reduced peripheral arterial stiffness	Grassi et al., 2009
Healthy women (n=21)	Green and black tea	Increased FMD	Jochmann ef a 2008
Experimental/in vitro study			
Isolated rat aorta	Green and black tea	Improved endothelium-mediated vasodilatation	Jochmann et a
Cultured endothelial cells	Green and black tea	Promoted eNOS activity and NO bioavailability	Lorenz ef al., 2004 Anter ef al., 2004 Siamwala ef al.
			2013
HUVECs	Derivatives of tea flavanols (EC, ECG, EGC, EGCG)	Dose-dependent increased NO production	Persson et al. 2006
Diabetic rats	Green tea	Decreased uncoupling of eNOS and increased NO production	Faria et al., 2012
Grape and wine			
Intervention study			
Meta-analyses of healthy and patients with (n=9)	Grape polyphenols	Improved FMD in both groups	Li et al., 2013
Patients with CAD (n=15)	Grape juice (4 ml/kg)	Improved FMD	Stein et al., 1999
Healthy individuals (n=12)	De-alcoholized red wine (250 ml) for 1 hour	Improved FMD	Agewall et al., 200
Patients with CAD (n=15)	Regular red wine or de-alcoholized red wine (250 ml)	FMD higher with the consumption of de- alcoholized red wine compared to regular red wine	Karatzi ef al., 200
Experimental/in vitro study			
Rat femoral artery	Provinol	Increased endothelium-dependent vasodilatation by stimulated NOS activity concomitantly and scavenged free radicals, which led to the enhancement of NO	Zenebe ef al., 200
	Alibumat and wine extent (21.0	bioavailability	Kondrashov ef
SHR (left ventricle, aorta and kidney tissues)	Alibernet red wine extract (24.2 mg/kg/day) for 3 weeks	moreased in NOS and SOD activities	Kondrashov et 2012
Aorta of SHR	Oral treatment with red wine polyphenols	Improved endothelial function and reduced	
	(40 mg/kg) for 5 weeks	vascular oxidative stress	et al., 2011
HUVECs	Resveratrol	Increased eNOS mRNA and protein expression	
HUVECs	Non-alcoholic wine extracts	and NO synthesis Activated estrogen receptors, enhanced expression and activity of eNOS, increased NO synthesis	
		- /	
HUVECs	Non-alcoholic wine extracts	Enhanced eNOS expression, increased NO synthesis	Rathel ef al., 20

		synthesis	
HUVECs	Resveratrol	Activated estrogen receptors and $PPAR\alpha$ in Takahashi and	
		endothelial cells, increased eNOS mRNA and Nakashima, 2012	
Cultured endothelial cell	Wine extract	protein expressions, promoting NO production Activated estrogen receptor alpha on Chalopin et al.,	
Cultured endotnellal cell	vvine extract	endothelial cells and recruitment of the 2010	
		mitogen-activated protein kinase ERK 1/2 and	
		phosphatidylinositol-3-OH kinase/Akt	
		pathways, resulted into the phosphorylation	
		and activation of the eNOS, leading to NO	
_		synthesis	
Cocoa Intervention study			
	Flowerski det det storelete ter (242	land and the first desired at 500 and 5 Table at al 2004	
Healthy adults		Improved endothelium-dependent FMD and Engler et al., 2004 increased plasma epicatechin concentration	
	low-flavanoid dark chocolate bars (46 g,		
	1.6 o.z)		
Pre-hypertensive and	6.3 g dark chocolate (30 mg polyphenol)	Reduced blood pressure and increased NO Taubert et al., 2007	
hypertensive patients (n=44)	vs. polyphenol free white chocolate; daily	metabolites	
	for 18 weeks		
Overweight adults (n=15)		Improved FMD and reduced blood pressure Faridi et al., 2008	
	cocoa powder) vs. cocoa-free placebo bar (0 mg cocoa powder)		
	Phase 2: sugar-free cocoa or sugared		
	cocoa (22 g cocoa powder) or placebo (0		
	g cocoa powder)		
Healthy subjects (n=16)	High-flavanol cocoa drink (917 mg) vs.	Improved FMD and increased NO metabolites Schroeter et al.,	
	low-flavanol cocoa drink (37 mg)	2006	
Overweight women (n=30)	37 g dark chocolate and sugar-free cocoa	Improved vasodilatation and reduced arterial West et al., 2014	
	beverage (814 mg flavanol) vs. low flavanol chocolate bar and cocoa-free	stiffness	
	beverage (3 mg flavanol) for 4 weeks		
Hypertensive patients	Flavanol-rich dark chocolate vs. white	Improved FMD Grassi et al., 2005	
	chocolate		
Diabetes patients	Single ingestion of flavanol-rich cocoa	Increased FMD and reversed vascular Balzer et al., 2008 dysfunction	
Patients with at least 1	Cocoa drink (100 ml) contained 176 mg	Increased NO bioactivity in human plasma and Heiss et al., 2003	
cardiovascular risk factor	flavanols)	improved FMD	
Healthy individuals (n=27)	Flavanol-rich cocoa beverage for 5 days	Improved NO-dependent FMD Fisher and	
		Hollenberg, 2006	
Experimental/in vitro study			
-	Procyanidins	Increased endothelium-dependent Karim et al., 2000	
	Procyanidins	Increased endothelium-dependent Karim et al., 2000 vasodilatation mediated by activation of eNOS	
		vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008	
Isolated rabbit aorta		vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocca-flavanols may contribute	
Isolated rabbit aorta		vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr <i>et al.</i> , 2008 suggested that cocca-flavanols may contribute to the regulation of L-arginine concentration	
Isolated rabbit aorta	Cocoa-flavanols	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocca-flavanols may contribute	
Isolated rabbit aorta Cultured human endothelial cells	Cocoa-flavanols	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr <i>et al.</i> , 2008 suggested that cocca-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply	
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial	Cocoa-flavanols	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocca-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007	
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells	Cocoa-flavanols	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocca-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007	
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells <u>Soy</u>	Cocoa-flavanols	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocca-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007	
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells <u>Soy</u> Intervention study	Cocoa-flavanols Cocoa-derived epicatechin	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocca-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007 NADPH oxidase	
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells <u>Soy</u> <i>Intervention study</i> Meta-analyses	Cocoa-flavanols Cocoa-derived epicatechin	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocca-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007 NADPH oxidase	
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells <u>Soy</u> <i>Intervention study</i> Meta-analyses postmenopausal women (n=9)	Cocoa-flavanois Cocoa-derived epicatechin Soy-isoflavones	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocca-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007 NADPH oxidase Increased FMD in subjects with low baseline Li et al., 2010 FMD levels, but not in high baseline FMD levels	əl
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells <u>Soy</u> <i>Intervention study</i> Meta-analyses postmenopausal women	Cocoa-flavanols Cocoa-derived epicatechin	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocca-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007 NADPH oxidase Increased FMD in subjects with low baseline Li et al., 2010 FMD levels, but not in high baseline FMD levels	al.,
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells <u>Soy</u> <i>Intervention study</i> Meta-analyses postmenopausal women (n=9) Meta-analyses (n=17)	Cocoa-flavanols Cocoa-derived epicatechin Soy-isoflavones Soy isoflavones	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocco-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007 NADPH oxidase Increased FMD in subjects with low baseline Li <i>et al.</i> , 2010 FMD levels, but not in high baseline FMD levels Improved endothelial function Beavers et 2012	
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells Soy Intervention study Meta-analyses postmenopausal women (n=9) Meta-analyses (n=17) Healthy postmenopausal	Cocoa-flavanois Cocoa-derived epicatechin Soy-isoflavones Soy isoflavones Soy isoflavones	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocco-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007 NADPH oxidase Increased FMD in subjects with low baseline Li <i>et al.</i> , 2010 FMD levels, but not in high baseline FMD levels Improved endothelial function Beavers et 2012	
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells Soy Intervention study Meta-analyses postmenopausal women (n=9) Meta-analyses (n=17) Healthy postmenopausal women with	Cocoa-flavanols Cocoa-derived epicatechin Soy-isoflavones Soy isoflavones	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocco-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007 NADPH oxidase Increased FMD in subjects with low baseline Li <i>et al.</i> , 2010 FMD levels, but not in high baseline FMD levels Improved endothelial function Beavers et 2012	
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells Soy Intervention study Meta-analyses postmenopausal women (n=9) Meta-analyses (n=17) Healthy postmenopausal	Cocoa-flavanois Cocoa-derived epicatechin Soy-isoflavones Soy isoflavones Soy isoflavones	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that cocco-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007 NADPH oxidase Increased FMD in subjects with low baseline Li <i>et al.</i> , 2010 FMD levels, but not in high baseline FMD levels Improved endothelial function Beavers et 2012	
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells Soy Intervention study Meta-analyses postmenopausal women (n=9) Meta-analyses (n=17) Healthy postmenopausal women with hypercholesterolemia (n=18)	Cocoa-flavanols Cocoa-derived epicatechin Soy-isoflavones Soy isoflavones Soy isoflavones (40 g soy protein and 4 mg isoflavones) for 4 weeks	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that coccoa-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007 NADPH oxidase Increased FMD in subjects with low baseline Li et al., 2010 FMD levels, but not in high baseline FMD levels Improved endothelial function Beavers et 2012 20 Increased FMD Cuevas et al., 2	003
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells Soy Intervention study Meta-analyses postmenopausal women (n=9) Meta-analyses (n=17) Healthy postmenopausal women with hypercholesterolemia (n=18) Healthy postmenopausal	Cocoa-flavanois Cocoa-derived epicatechin Soy-isoflavones Soy isoflavones Soy isoflavones (40 g soy protein and 6 mg isoflavones) for 4 weeks Soy isoflavones enriched low-fat meal (8	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that coccoa-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007 NADPH oxidase Increased FMD in subjects with low baseline Li et al., 2010 FMD levels, but not in high baseline FMD levels Improved endothelial function Beavers et 2012 20 Increased FMD Cuevas et al., 2	003
Isolated rabbit aorta Cultured human endothelial cells Cultured human endothelial cells <u>Soy</u> Intervention study Meta-analyses postmenopausal women (n=9) Meta-analyses (n=17) Healthy postmenopausal women with hypercholesterolemia (n=18)	Cocoa-flavanols Cocoa-derived epicatechin Soy-isoflavones Soy isoflavones Soy isoflavones (40 g soy protein and 4 mg isoflavones) for 4 weeks	vasodilatation mediated by activation of eNOS Reduced arginase mRNA expression, Schnorr et al., 2008 suggested that coccoa-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply Increased NO concentration via inhibition of Steffen et al., 2007 NADPH oxidase Increased FMD in subjects with low baseline Li et al., 2010 FMD levels, but not in high baseline FMD levels Improved endothelial function Beavers et 2012 20 Increased FMD Cuevas et al., 2	003

Healthy postmenopausal women (n=57)	Soy isoffavones tablet (60 mg) vs. control tablets for 6 months	Improved endothelium-dependent FMD	Colacurci et al., 2005
Healthy postmenopausal	Soy isoflavons tablet (100 mg) vs. control	Reduced addative stress, but no Improvement	Pusparini et al.,
women (n=182)	tablets for 12 months	In endothelial function	2013
Hypercholesterolemia men (n-20)	Soy protein	Improved endothelial function	Yıldırır erak., 2001
Renai transplant patients	Soy protein (25 g/day) for 5 weeks	Improved FMD. The effects disappeared after soy withdrawal	Cupisti eral., 2007
Experimentarin vitro study			
Aorta of ovariectomized rats	Soy-Isoftavones (5 mg/kg) for 4 weeks	Improved endothelium-dependent vasodilatation	Catania eral., 2002
Coronary artery of	Soy-based diet (low vs. high isoflavones)	Enhanced coronary vascular reactivity	Honore et al., 1997
atheroscierotic female	for 6 months		
monkeys			
Rat aorta	Soy Isoflavones	Increased antioxidant, Increased eNOS	Mann et al., 2005
		expression and improved endothelium-	
		dependent vasodilatation	
Pomegranate			
intervention study			
Hypertensive men (n=13)	Pomegranate juice (150 ml) for 4 hours	Reduced SBP and DBP and increased trend in FMD	Asgary et al., 2013
Hypertensive patients	Receive either natural pomegranate juice	Reduced SBP and DBP but not FMD	Asgary et al., 2014
(n=21)	(150 ml/day) or water (150 ml) as	Reduced serum levels of VCAM-1 and	
	placebo	elevated E-selectin	
Adolescent with metabolic	Pomegranate juice (240imi/day) for 30	Improved FMD	Hashemi et al.,
syndrome (n=30)	days		2010; Farla and
······			Calhau. 2011.
			Kellshadi et al.,
			2011
Experimentaliin vitro study			
Human coronary artery	Pomegranate juice and fruit extract	Increased eNOS expression	De Nigris et al.,
endothellal cells			2007
Bovine pulmonary artery	Pomegranate julce	Protected NO against oxidative damage	ignarro et al, 2006

CAD, coronary artery disease; DBP, diastolic blood pressure; eNOS, endothelial nitric oxide synthase; EC, epicatechin; ECG, epicatechin-3-gallate; EGC, epigallocatechin; EGCG, epigallocatechin-3-gallate; FMD, flow-mediated dilatation; HUVEC, human umbilical vein endothelial cells; NADPH, nicotinamide adenine dinucleotide phosphate ; NO, nitric oxide; PPAR α , peroxisome proliferator-activated receptor α ; RCT, randomized controlled trial; SBP, systolic blood pressure; SHR, spontaneously hypertensive rat; SOD, superoxide dismutase

green and black tea consumption (Jochmann *et al.*, 2008). Meta-analysis from nine human intervention studies illustrated that moderate consumption of tea substantially enhanced FMD, in which the overall increase in FMD with daily dose of 500 ml of tea (2-3 cups) compared to placebo was 2.6% of the arterial diameter (Ras *et al.*, 2011).

Experimental / In vitro *study*

The underlying molecular mechanisms for teainduced effects on endothelial function may be due to its direct effect on the NO system. It has been demonstrated that both black and green teas promoted both endothelial NOS activity and NO bioavailability in cultured endothelial cells (Anter *et al.*, 2004; Lorenz *et al.*, 2004; Jochmann *et al.*, 2008; Siamwala *et al.*, 2013). In addition, incubation of human endothelial cells with four derivatives of tea flavanols; EC, ECG, EGC, and EGCG showed dose-dependent increases in NO production (Persson *et al.*, 2006). In diabetic rats, treatment with green tea improved uncoupling of eNOS, thus increased NO bioavailability (Faria *et al.*, 2012). Uncoupling of eNOS is characterized by a reduction in tetrahydrobiopterin (BH₄) levels and a decrease in the eNOS dimer-to-monomer ratio. BH_4 is a critical cofactor for the production of NO. When BH_4 is limited, eNOS becomes uncoupled, and superoxide ion is produced instead of NO. Thus BH_4 availability is essential for normal endothelial function. Hence, Faria *et al.* (2012) demonstrated that green tea reversed diabetes-induced reduction of BH_4 levels, decreased eNOS uncoupling, leading to increased NO production.

Grape and/ or wine

Intervention study

Recently, it has been suggested that grape polyphenols including epicatechin, catechin, quercetin, gallic acid and resveratrol have vasculoprotective effects and can improve endothelial function. In CAD patients, consumption for 14 days of four ml/kg grape juice improved FMD (Stein et al., 1999). Similarly, Agewall et al. (2000) demonstrated improvement of FMD one hour after consumption of de-alcoholized red wine (250 ml) among healthy volunteers (Agewall et al., 2000). Karatzi et al. (2004) assessed the acute effects of 250 ml of either red wine or de-alcoholized red wine consumption on FMD in 15 males with CAD. FMD was shown to be higher following the consumption of de-alcoholized red wine compared to regular red wine, suggesting that the beneficial effects may be attributed to the presence of polyphenols in wine without the presence of alcohol (Karatzi et al., 2004). Metaanalysis of nine studies revealed that intake of grape polyphenols increased FMD levels in both healthy and subjects with high cardiovascular risk (smoker and CAD); the increase in FMD appeared to be much more obvious in the latter subject groups. The effect of grape polyphenols on FMD in healthy subjects was observed at 30 minutes after ingestion; the effect was delayed in subjects with high cardiovascular (CVS) risk, which was at 60 minutes after ingestion. The difference in timing of the acute effects of grape polyphenols between the two groups may be due to impaired endothelial function in the high CVS risk group. This is supported by the observation that baseline FMD in the group with high CVS risk ranged from 2.6% to 5.65%, which were lower than in the healthy group (5.4% to 7.4%) (Li *et al.*, 2013).

Experimental / In vitro *study*

In vitro and animal studies have indicated that grape polyphenols enhance eNOS activity and increase NO production in endothelial cells. The compounds obtained by purification of the nonalcoholic fraction of wine enhanced eNOS mRNA and protein expression and stimulated the synthesis of NO in human endothelial cells (Leikert et al., 2002; Wallerath et al., 2003; Rathel et al., 2007; Simoncini et al., 2011). Simoncini et al. (2011) reported that the compounds derived from wine enhanced expression of eNOS in human endothelial cells, indicating that the wine extract acts at the transcriptional level. Isometric study using rat femoral artery reported that the red wine polyphenol, Provinol elicited endotheliumdependent relaxation by stimulating NOS activity concomitantly with scavenging free radicals, which led to the enhancement of NO bioavailability (Zenebe et al., 2003). In spontaneously hypertensive rats (SHR), treatment with Alibernet red wine extract (24.2 mg/kg/day) for three weeks contributed to an increase in NOS and superoxide dismutase (SOD) activities in left ventricle, aorta and kidney tissues (Kondrashov et al., 2012).

It has been established that the compounds contained in wine behave like estrogens. Wine extract induces NO synthesis in vascular endothelial cells through the activation of estrogen receptors expressed in vascular cells. These estrogen receptors play important vascular regulatory actions. Indeed, similar to estradiol, exposure of endothelial cells to wine polyphenols activates estrogen receptor alpha. The activation of estrogen receptors leads to the recruitment of the mitogen-activated protein kinase ERK 1/2 and phosphatidylinositol-3-OH kinase/Akt pathways at the cell membrane or within the cell's cytosoplasm resulting in the eNOS activation that eventually increases NO production (Chalopin et al., 2010). Indeed, similar observations have been demonstrated in a study using resveratrol treatment, a polyphenol present in wine. Repeated treatment with resveratrol for five days increased eNOS mRNA and protein expression in cultured human endothelial cells, possibly by activating the estrogen receptors and PPARa in endothelial cells (Takahashi and Nakashima, 2012). Another mechanism by which grape polyphenols can exerts it cardioprotective benefit is through it antioxidant effects. In a study using aorta from female SHR, treatment with red wine polyphenols (40 mg/kg for five weeks) improved endothelial function which was associated with reduced vascular oxidative stress (Lopez-Sepulveda et al., 2011).

Cocoa

Intervention study

Cocoa is derived from the seeds of the fruit from Theobroma cacao tree. Human trials suggested that cocoa or chocolate consumption were correlated

with improvement in NO-mediated FMD and increased plasma or urine NO-derived species (S-nitrosothiols). Faridi et al. (2008) showed that acute ingestion of solid dark chocolate (22 g cocoa powder) and liquid cocoa improved FMD in 45 overweight adults (Faridi et al., 2008). Recently, West et al. demonstrated enhanced vasodilatation in both conduit and resistance arteries of overweight women after consumption of high-flavanol cocoa drink (814 mg/day) and dark chocolate (37 g/day) (West et al., 2014). Ingestion of high-flavanol cocoa drink (917 mg of flavonols) increased NO metabolites in plasma and urine of healthy subjects, and this was associated with improvement of FMD (Schroeter et al., 2006). It has been demonstrated that administration of a high flavonoid-cocoa drink transiently improved NOdependent FMD in the presence of pre-existing CVS risk, including hypertension and diabetes (Heiss et al., 2003; Grassi et al., 2005; Balzer et al., 2008). In prehypertensive and hypertensive patients, consumption of 6.3 g of chocolate (30 mg of polyphenols) daily for 18 weeks showed increased plasma NO metabolites (Taubert et al., 2007). In healthy individuals, two weeks ingestion of flavanoid-rich dark chocolate bar (213 mg procyanidins, 46 mg epicatechin) improved FMD compared to ingestion of low-flavanoid dark chocolate bars (46 g, 1.6 o.z) (Engler et al., 2004). Similarly, consumption of cocoa-derived beverage over five days in 27 healthy volunteers improved NO-dependent vasodilatation (Fisher et al., 2006). A meta-analysis of 11 chronic and 11 acute clinical studies suggested improvement in FMD after acute and chronic ingestion of chocolate (Hooper et al., 2012).

Experimental / In vitro study

Animal study showed that treatment of rabbit aorta with the cocoa extract, procyanidin caused endothelium-dependent vasodilatation, which was likely dependent on the activation of eNOS and increased NO production (Karim et al., 2000). Increased NO bioavailability is dependent on the availability of the substrate for eNOS, L-arginine. In mammals, arginase catalyzes the conversion of L-arginine to urea. Vascular arginase competes with eNOS for their common substrate L-arginine, and this may impair NO production. Schnorr et al. (2008) demonstrated that treatment with cocoaflavanols decreased arginase activity in humans and reduced arginase mRNA expression in cultured human endothelial cells. This finding suggested that cocoa-flavanols may contribute to the regulation of L-arginine concentration and NOS substrate supply (Schnorr et al., 2008). Besides their effects

on eNOS expression and activity, cocoa flavanols also exert antioxidant effects *in vitro*. Treatment of cultured human endothelial cells with cocoaderived epicatechin increased NO concentration via inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which is an enzyme that catalyzes the production of superoxide anion (Steffen *et al.*, 2007).

Soy

Intervention studies

There is a growing interest on the effects of soy isoflavones on endothelial dysfunction in animals and humans. Human trial in healthy, postmenopausal women with hypercholesterolemia showed that four weeks treatment with soy protein (40 g soy protein powder; 80 mg isoflavones) increased FMD indicating the improvement in endothelial function (Cuevas et al., 2003). Hall et al. (2008) demonstrated that ingestion of isoflavone-enriched low-fat meal endothelium-dependent vasodilatation increased in postmenopausal women (Hall et al., 2008). In another study on healthy postmenopausal women, treatment with soy isoflavone tablets (30 mg genistin and 30 mg daidzein) for 6 months showed significant improvement in endothelium-dependent vasodilatation among these women (Colacurci et al., 2005). Recently, a 12 months human trial was conducted among 182 Indonesian postmenopausal women to determine the effect of 100 mg/day soy isoflavone tablets on vascular endothelial function. This study showed a reduction in oxidative stress through lowering of malondialdehyde (MDA) concentration, which is a marker of lipid oxidation. However there was no improvement in vascular endothelial function observed (Pusparini et al., 2013). The different results obtained between Pusparini et al. (2013) and other clinical studies may be due to few factors such as including duration and dosage of soy isoflavones, as well as subjects' characteristics. The subjects in the study by Pusparini et al. (2013) consumed relatively high daily soy isoflavones (100 mg/day) for a year, whereas other human trials that showed significant results only consumed low soy isoflavone for shorter durations. In addition, the study by Pusparini et al. (2013) was performed in an Asian country, whereas the other studies were conducted in Western countries, suggesting that ethnic influences may affect the different outcomes. Yildirir et al. (2001) also reported improvement in endothelial function in 20 males with hypercholesterolemia after soy ingestion (Yildirir et al., 2001). In patients with renal transplant, soy protein diet consumption (25 g/day) for five weeks improved FMD and the effects disappeared after soy withdrawal, suggesting that the improvement was dependent on soy intake (Cupisti et al., 2007). A meta-analysis of nine human trials found that soy isoflavones increased FMD in postmenopausal women with low baseline, but not in high baseline FMD levels (Li et al., 2010). Recently, a Bayesian meta-analysis by Beavers et al. (2012) accumulated evidence from 17 human trials and revealed that exposure to soy isoflavones improved endothelial function as measured by FMD (Beavers et al., 2012). The difference between these two meta-analysis were that the first analysis omitted studies which included men and used soy protein, while the latter expands the study inclusion criteria to accommodate a larger sample size without regard to gender.

Experimental / In vitro study

The vascular effects of soy isoflavones were often studied in animal models which have reduced levels of circulating estrogens and eNOS activity, such as ovariectomized animals. It was demonstrated that diet enriched in soy isoflavones improved acetylcholineinduced endothelium-dependent vasodilatation in aorta from ovariectomized rats (Catania *et al.*, 2002) and coronary arteries from atherosclerotic female monkeys (Honore *et al.*, 1997). Besides, a diet rich in soy isoflavones also induces increase in antioxidant and eNOS expression in animal aortas, leading to improved endothelium-dependent vasodilatation and reduced blood pressure (BP) (Mahn *et al.*, 2005).

Pomegranate

Intervention study

Pomegranate (*Punica granatum* L. Punicaceae) is a seeded or granular apple, a delicious fruit consumed worldwide. Pomegranate contains substantial amounts of phenolic compounds, including flavonoids and hydrolysable tannins especially punicalagin. Most studies have demonstrated antioxidant, anticancer and anti-inflammatory properties of pomegranate (Faria and Calhau, 2011; Ismail *et al.*, 2012). Although several studies have demonstrated cardioprotective role of pomegranate extracts such as attenuation of atherosclerosis development and reduction of in BP (Aviram and Dornfeld, 2001; Aviram *et al.*, 2004), there seemed to be very scarce literature that reports the effect of pomegranate on endothelium-mediated vasodilatation.

In hypertensive patients, ingestion of pomegranate juice (150 ml/day) for two weeks reduced BP and showed increasing trends in FMD (Asgary *et al.*,

2013; Asgary *et al.*, 2014). Furthermore, two studies demonstrated that consumption of pomegranate juice (240 ml/day) for 30 days improved FMD in 30 adolescents with metabolic syndrome (Hashemi *et al.*, 2010; Kelishadi *et al.*, 2011).

Experimental / In vitro study

The principal mechanisms of action of pomegranate juice on vasodilatation may be due to enhanced expression of eNOS protein and NO production. Treatment with pomegranate juice increased eNOS protein expression in cultured human endothelial cells and carotid arteries of hypercholesterolemic mice (De Nigris *et al.*, 2007). Besides, pomegranate juice also possesses potent antioxidant activity. Pomegranate juice has been shown to protect NO against oxidative damage, thus resulting in increased bioavailability of NO in bovine pulmonary artery (Ignarro *et al.*, 2006).

Conclusion

Endothelial dysfunction is the precursor and early marker in the development and progression of atherosclerosis. There is increasing evidence showing that several plant-derived foods taken in the diet influences endothelial NO production and improves endothelial function. Thus, consumption of these natural products as dietary supplements may serve as a preventive measure to prevent vasculopathy. They may also serve as an adjunct to routine conventional treatments in patients with CVD.

Despite progress seen in the field of natural products and their cardioprotective effects, further research is still needed, especially in terms of phytochemical analyses of these active extracts and their pharmacological activities. In addition, more detailed work needs to be performed on the synergistic effects of plant constituents, to understand whether it can exert maximum therapeutic efficacy individually or in combination with other plant constituents. As most natural products have not been scientifically evaluated, the information of their efficacy, safety and potential interaction with conventionally used drugs are limited. Thus, research aimed to fill the current gaps in knowledge about potential harm and effectiveness of the plant-derived foods is needed to translate their applications into the clinical setting.

Acknowledgements

We thank Malaysian Ministry of Higher Education for providing a scholarship to SSM. We also thank USM Postgraduate Research Grant Scheme (1001/

PPSP/8145001).

References

- Agewall, S., Wright, S., Doughty, R. N., Whalley, G. A., Duxbury, M. and Sharpe, N. 2000. Does a glass of red wine improve endothelial function?. European Heart Journal 21(1): 74-78.
- Alexopoulos, N., Vlachopoulos, C., Aznaouridis, K., Baou, K., Vasiliadou, C., Pietri, P., Xaplanteris, P., Stefanadi, E. and Stefanadis, C. 2008. The acute effect of green tea consumption on endothelial function in healthy individuals. European Journal of Cardiovascular Prevention and Rehabilitation 15(3): 300-305.
- Anter, E., Thomas, S. R., Schulz, E., Shapira, O. M., Vita, J. A. and Keaney, J. F. Jr. 2004. Activation of endothelial nitric-oxide synthase by the p38 MAPK in response to black tea polyphenols. The Journal of Biological Chemistry 279(45): 46637-46643.
- Asgary, S., Keshvari, M., Sahebkar, A., Hashemi, M. and Rafieian-Kopaei, M. 2013. Clinical investigation of the acute effects of pomegranate juice on blood pressure and endothelial function in hypertensive individuals. ARYA Atherosclerosis 9(6): 326-331.
- Asgary, S., Sahebkar, A., Afshani, M. R., Keshvari, M., Haghjooyjavanmard, S. and Rafieian-Kopaei, M. 2014. Clinical evaluation of blood pressure lowering, endothelial function improving, hypolipidemic and anti-inflammatory effects of pomegranate juice in hypertensive subjects. Phytotherapy Research 28(2): 193-199.
- Aviram, M. and Dornfeld, L. 2001. Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis 158(1): 195-198.
- Aviram, M., Rosenblat, M., Gaitini, D., Nitecki, S., Hoffman, A., Dornfeld, L., Volkova, N., Presser, D., Attias, J., Liker, H. and Hayek, T. 2004. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clinical Nutrition 23(3): 423-433.
- Balzer, J., Rassaf, T., Heiss, C., Kleinbongard, P., Lauer, T., Merx, M., Heussen, N., Gross, H. B., Keen, C. L., Schroeter, H. and Kelm, M. 2008. Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double-masked, randomized, controlled trial. Journal of the American College of Cardiology 51(22): 2141-2149.
- Beavers, D. P., Beavers, K. M., Miller, M., Stamey, J. and Messina, M. J. 2012. Exposure to isoflavonecontaining soy products and endothelial function: a Bayesian meta-analysis of randomized controlled trials. Nutrition, Metabolism, and Cardiovascular Diseases 22(3): 182-191.
- Cabrera, C., Artacho, R. and Gimenez, R. 2006. Beneficial effects of green tea - a review. Journal of the American College of Nutrition 25(2): 79-99.
- Catania, M. A., Crupi, A., Firenzuoli, F., Parisi, A.,

Sturiale, A., Squadrito, F., Caputi, A. P. and Calapai, G. 2002. Oral administration of a soy extract improves endothelial dysfunction in ovariectomized rats. Planta Medica 68(12): 1142-1144.

- Chacko, S. M., Thambi, P. T., Kuttan, R. and Nishigaki, I. 2010. Beneficial effects of green tea: A literature review. Chinese Medicine 5:13-13.
- Chalopin, M., Tesse, A., Martinez, M. C., Rognan, D., Arnal, J. F. and Andriantsitohaina, R. 2010. Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium. PLoS One 5(1): e8554.
- Colacurci, N., Chiantera, A., Fornaro, F., de Novellis, V., Manzella, D., Arciello, A., Chiantera, V., Improta, L. and Paolisso, G. 2005.. Effects of soy isoflavones on endothelial function in healthy postmenopausal women. Menopause 12(3): 299-307.
- Cuevas, A. M., Irribarra, V. L., Castillo, O. A., Yanez, M. D. and Germain, A. M. 2003. Isolated soy protein improves endothelial function in postmenopausal hypercholesterolemic women. European Journal of Clinical Nutrition 57(8): 889-894.
- Cupisti, A., Ghiadoni, L., D'Alessandro, C., Kardasz, I., Morelli, E., Panichi, V., Locati, D., Morandi, S., Saba, A., Barsotti, G., Taddei, S., Arnoldi, A. and Salverri, A. 2007. Soy protein diet improves endothelial dysfunction in renal transplant patients. Nephrology, Dialysis, Transplantation 22(1): 229-234.
- De Nigris, F., Williams-Ignarro, S., Sica, V., Lerman, L. O., D'Armiento, F. P., Byrns, R. E., Casamassimi, A., Carpentiero, D., Schiano, C., Sumi, D., Fiorito, C., Ignarro, L. J. and Napoli, C. 2007. Effects of a Pomegranate Fruit Extract rich in punicalagin on oxidation-sensitive genes and eNOS activity at sites of perturbed shear stress and atherogenesis. Cardiovascular Research 73(2): 414-423.
- Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G. and Crozier, A. 2013. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants and Redox Signaling 18(14): 1818-1892.
- Duffy, S. J., Keaney, J. F. Jr., Holbrook, M., Gokce, N., Swerdloff, P. L., Frei, B. and Vita, J. A. 2001. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation 104(2): 151-156.
- Engler, M. B., Engler, M. M., Chen, C. Y., Malloy, M. J., Browne, A., Chiu, E. Y., Kwak, H. K., Milbury, P., Paul, S. M., Blumberg, J. and Mietus-Snyder, M. L. 2004. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. Journal of the American College of Nutrition 23(3): 197-204.
- Faria, A, and Calhau, C. 2011. The bioactivity of pomegranate: impact on health and disease. Critical Reviews in Food Science and Nutrition 51(7): 626-634.
- Faria, A. M., Papadimitriou, A., Silva, K. C., Lopes de Faria, J. M. and Lopes de Faria, J. B. 2012. Uncoupling endothelial nitric oxide synthase is ameliorated by

green tea in experimental diabetes by re-establishing tetrahydrobiopterin levels. Diabetes 61(7): 1838-1847.

- Faridi, Z., Njike, V. Y., Dutta, S., Ali, A. and Katz, D. L. 2008. Acute dark chocolate and cocoa ingestion and endothelial function: a randomized controlled crossover trial. The American Journal of Clinical Nutrition 88(1): 58-63.
- Felaco, M., Grilli, A., De Lutiis, M. A., Patruno, A., Libertini, N., Taccardi, A. A., Di Napoli, P., Di Giulio, C., Barbacane, R. and Conti, P. 2001. Endothelial nitric oxide synthase (eNOS) expression and localization in healthy and diabetic rat hearts. Annals of Clinical and Laboratory Science 31(2): 179-186.
- Fisher, N. D. and Hollenberg, N. K. 2006. Aging and vascular responses to flavanol-rich cocoa. Journal of Hypertension 24(8): 1575-1580.
- Fuchs, D., de Graaf, Y., van Kerckhoven, R. and Draijer, R. 2014. Effect of tea theaflavins and catechins on microvascular function. Nutrients 6(12): 5772-5785.
- Grassi, D., Mulder, T. P., Draijer, R., Desideri, G., Molhuizen, H. O. and Ferri, C. 2009. Black tea consumption dose-dependently improves flowmediated dilation in healthy males. Journal of Hypertension 27(4): 774-781.
- Grassi, D., Necozione, S., Lippi, C., Croce, G., Valeri, L., Pasqualetti, P., Desideri, G., Blumberg, J. B. and Ferri, C. 2005. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 46(2): 398-405.
- Habauzit, V. and Morand, C. 2012. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Therapeutic Advances in Chronic Disease 3(2): 87-106.
- Hall, W. L., Formanuik, N. L., Harnpanich, D., Cheung, M., Talbot, D., Chowienczyk, P. J. and Sanders, T. A. 2008. A meal enriched with soy isoflavones increases nitric oxide-mediated vasodilation in healthy postmenopausal women. The Journal of Nutrition 138(7): 1288-1292.
- Hashemi, M., Kelishadi, R., Hashemipour, M., Zakerameli, A., Khavarian, N., Ghatrehsamani, S. and Poursafa, P. 2010. Acute and long-term effects of grape and pomegranate juice consumption on vascular reactivity in paediatric metabolic syndrome. Cardiology in the Young 20(1): 73-77.
- Heiss, C., Dejam, A., Kleinbongard, P., Schewe, T., Sies, H. and Kelm, M. Vascular effects of cocoa rich in flavan-3-ols. Journal of American Medical Association 290(8): 1030-1031.
- Hodgson, J. M. 2006. Effects of tea and tea flavonoids on endothelial function and blood pressure: a brief review. Clinical and Experimental Pharmacology and Physiology 33(9): 838-841.
- Honore, E. K., Williams, J. K., Anthony, M. S. and Clarkson, T. B. 1997. Soy isoflavones enhance coronary vascular reactivity in atherosclerotic female macaques. Fertility and Sterility 67(1): 148-154.
- Hooper, L., Kay, C., Abdelhamid, A., Kroon, P. A., Cohn,

J. S., Rimm, E. B. and Cassidy, A. 2012. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. The American Journal of Clinical Nutrition 95(3): 740-751.

- Ignarro, L. J., Byrns, R. E., Sumi, D., de Nigris, F. and Napoli, C. 2006. Pomegranate juice protects nitric oxide against oxidative destruction and enhances the biological actions of nitric oxide. Nitric Oxide 15(2): 93-102.
- Ismail, T., Sestili, P. and Akhtar, S. 2012. Pomegranate peel and fruit extracts: a review of potential antiinflammatory and anti-infective effects. Journal of Ethnopharmacology 143(2): 397-405.
- Jochmann, N., Lorenz, M., Krosigk, A., Martus, P., Bohm, V., Baumann, G., Stangl, K. and Stangl, V. 2008. The efficacy of black tea in ameliorating endothelial function is equivalent to that of green tea. The British Journal of Nutrition 99(4): 863-868.
- Karatzi, K., Papamichael, C., Aznaouridis, K., Karatzis, E., Lekakis, J., Matsouka, C., Boskou, G., Chiou, A., Sitara, M., Feliou, G., Kontoyiannis, D., Zampelas, A. and Mavrikakis, M. 2004. Constituents of red wine other than alcohol improve endothelial function in patients with coronary artery disease. Coronary Artery Disease 15(8): 485-490.
- Karim, M., McCormick, K. and Kappagoda, C. T. 2000. Effects of cocoa extracts on endothelium-dependent relaxation. The Journal of Nutrition 130(8S Suppl): 2105S-2108S.
- Kelishadi, R., Gidding, S. S., Hashemi, M., Hashemipour, M., Zakerameli, A. and Poursafa, P. 2011. Acute and long term effects of grape and pomegranate juice consumption on endothelial dysfunction in pediatric metabolic syndrome. Journal of Research in Medical Sciences 16(3): 245-253.
- Khan, N. and Mukhtar, H. 2013. Tea and health: studies in humans. Current Pharmaceutical Design 19(34): 6141-6147.
- Kim, W., Jeong, M. H., Cho, S. H., Yun, J. H., Chae, H. J., Ahn, Y. K., Lee, M. C., Cheng, X., Kondo, T., Murohara, T. and Kang, J. C. 2006. Effect of green tea consumption on endothelial function and circulating endothelial progenitor cells in chronic smokers. Circulation Journal 70(8): 1052-1057.
- Kondrashov, A., Vranková, S., Dovinová, I., Sevcik, R., Parohová, J., Barta, A., Pechanova, O. and Kovacsova, M. 2012. The Effects of New Alibernet Red Wine Extract on Nitric Oxide and Reactive Oxygen Species Production in Spontaneously Hypertensive Rats. Oxidative Medicine and Cellular Longevity article id 806285, 8 pages.
- Leikert, J. F., Rathel, T. R., Wohlfart, P., Cheynier, V., Vollmar, A. M. and Dirsch, V. M. 2002. Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation 106(13): 1614-1617.
- Li, S. H., Liu, X. X., Bai, Y. Y., Wang, X. J., Sun, K., Chen, J. Z. and Hui, R. T. 2010. Effect of oral isoflavone supplementation on vascular endothelial function

in postmenopausal women: a meta-analysis of randomized placebo-controlled trials. The American Journal of Clinical Nutrition 91(2): 480-486.

- Li, S. H., Tian, H. B., Zhao, H. J., Chen, L. H. and Cui, L. Q. 2013. The acute effects of grape polyphenols supplementation on endothelial function in adults: meta-analyses of controlled trials. PLoS One 8(7): e69818.
- Lopez-Sepulveda, R., Gomez-Guzman, M., Zarzuelo, M. J., Romero, M., Sanchez, M., Quintela, A. M., Galindo, P., Ovalle, F., Tamargo, J., Perez-Vizcaino, F., Duarte, J. and Jimenez, R. 2011. Red wine polyphenols prevent endothelial dysfunction induced by endothelin-1 in rat aorta: role of NADPH oxidase. Clinical Science 120(8): 321-333.
- Lorenz, M., Wessler, S., Follmann, E., Michaelis, W., Dusterhoft, T., Baumann, G., Stangl, K. and Stangl, V. 2004. A constituent of green tea, epigallocatechin-3gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. The Journal of Biological Chemistry 279(7): 6190-6195.
- Mahn, K., Borras, C., Knock, G. A., Taylor, P., Khan, I. Y., Sugden, D., Poston, L., Ward, J. P., Sharpe, R. M., Vina, J., Aaronson, P. I. and Mann, G. E. 2005. Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo. Faseb Journal 19(12): 1755-1757.
- McKay, D. L. and Blumberg, J. B. 2002. The role of tea in human health: an update. The Journal of the American College of Nutrition 21(1): 1-13.
- Mokhtar, S. S., Vanhoutte, P. M., Leung, S. W. S., Yusof, M. I., Wan Sulaiman, W. A., Mat Saad, A. Z., Suppian, R. and Rasool, A. H. 2013. Reduced expression of prostacyclin synthase and nitric oxide synthase in subcutaneous arteries of type 2 diabetic patients. The Tohoku Journal of Experimental Medicine 231(3): 217-222.
- Nagaya, N., Yamamoto, H., Uematsu, M., Itoh, T., Nakagawa, K., Miyazawa, T., Kangawa, K. and Miyatake, K. 2004. Green tea reverses endothelial dysfunction in healthy smokers. Heart 90(12):1485-1486.
- Pandey, K. B. and Rizvi, S. I. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity 2(5): 270-278.
- Park, C. S., Kim, W., Woo, J. S., Ha, S. J., Kang, W. Y., Hwang, S. H., Park, Y. W., Kim, Y. S., Ahn, Y. K., Jeong, M. H. and Kim, W. 2010. Green tea consumption improves endothelial function but not circulating endothelial progenitor cells in patients with chronic renal failure. International Journal of Cardiology 145(2): 261-262.
- Persson, I. A., Josefsson, M., Persson, K. and Andersson, R. G. 2006. Tea flavanols inhibit angiotensin-converting enzyme activity and increase nitric oxide production in human endothelial cells. The Journal of Pharmacy

and Pharmacology 58(8): 1139-1144.

- Pusparini, Dharma, R., Suyatna, F. D., Mansyur, M. and Hidajat, A. 2013. Effect of soy isoflavone supplementation on vascular endothelial function and oxidative stress in postmenopausal women: a community randomized controlled trial. Asia Pacific Journal of Clinical Nutrition 22(3): 357-364.
- Ras, R. T., Zock, P. L. and Draijer, R. 2011. Tea Consumption Enhances Endothelial-Dependent Vasodilation; a Meta-Analysis. PLoS One 6(3): e16974.
- Rathel, T. R., Samtleben, R., Vollmar, A. M. and Dirsch, V. M. 2007. Activation of endothelial nitric oxide synthase by red wine polyphenols: impact of grape cultivars, growing area and the vinification process. Journal of Hypertension 25(3): 541-549.
- Schnorr, O., Brossette, T., Momma, T. Y., Kleinbongard, P., Keen, C. L., Schroeter, H., Sies, H. 2008. Cocoa flavanols lower vascular arginase activity in human endothelial cells *in vitro* and in erythrocytes *in vivo*. Archives of Biochemistry and Biophysics 476(2): 211-215.
- Schroeter, H., Heiss, C., Balzer, J., Kleinbongard, P., Keen, C. L., Hollenberg, N. K., Sies, H., Kwik-Uribe, C., Schmitz, H. H. and Kelm, M. 2006. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proceedings of the National Academy of Sciences of the United State of America 103(4): 1024-1029.
- Siamwala, J. H., Dias, P. M., Majumder, S., Joshi, M. K., Sinkar, V. P., Banerjee, G. and Chatterjee, S. 2013. L-theanine promotes nitric oxide production in endothelial cells through eNOS phosphorylation. The Journal of Nutritional Biochemistry 24(3): 595-605.
- Simoncini, T., Lenzi, E., Zöchling, A., Gopal, S., Goglia, L., Russo, E., Polak, K., Casarosa, E., Jungbauer, A., Genazzani, A. D., and Genazzani, A. R. 2011. Estrogen-like effects of wine extracts on nitric oxide synthesis in human endothelial cells. Maturitas 70(2): 169-175.
- Steffen, Y., Schewe, T. and Sies, H. 2007. (-)-Epicatechin elevates nitric oxide in endothelial cells via inhibition of NADPH oxidase. Biochemical and Biophysical Research Communications 359(3): 828-833.
- Stein, J. H., Keevil, J. G., Wiebe, D. A., Aeschlimann, S. and Folts, J. D. 1999. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 100(10): 1050-1055.
- Takahashi, S. and Nakashima, Y. 2012. Repeated and long-term treatment with physiological concentrations of resveratrol promotes NO production in vascular endothelial cells. The British Journal of Nutrition 107(6): 774-780.
- Taubert, D., Roesen, R., Lehmann, C., Jung, N. and Schomig, E. 2007. Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide: a randomized controlled trial. JAMA 298(1): 49-60.
- Vanhoutte, P. M., Shimokawa, H., Tang, E. H. and Feletou, M. 2009. Endothelial dysfunction and vascular disease. Acta Physiologica 196(2): 193-222.

- Wallerath, T., Poleo, D., Li, H. and Forstermann, U. 2003. Red wine increases the expression of human endothelial nitric oxide synthase: a mechanism that may contribute to its beneficial cardiovascular effects. Journal of the American College of Cardiology 41(3): 471-478.
- West, S. G., McIntyre, M. D., Piotrowski, M. J., Poupin, N., Miller, D. L., Preston, A. G., Wagner, P., Groves, L. F. and Skulas-Ray, A. C. 2014. Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults. The British Journal of Nutrition 111(4): 653-661.
- Yamagata, K., Tagami, M. and Yamori, Y. 2015. Dietary polyphenols regulate endothelial function and prevent cardiovascular disease. Nutrition 31(1): 28-37.
- Yildirir, A., Tokgozoglu, S. L., Oduncu, T., Oto, A., Haznedaroglu, I., Akinci, D., Koksal, G., Sade, E., Kirazli, S. and Kes, S. 2001. Soy protein diet significantly improves endothelial function and lipid parameters. Clinical Cardiology 24(11): 711-716.
- Zenebe, W., Pechanova, O. and Andriantsitohaina, R. 2003. Red wine polyphenols induce vasorelaxation by increased nitric oxide bioactivity. Physiological Research 52(4): 425-432.